

Desaprumo x Vento

Estruturas de concreto sempre estão sujeitas a terem desvios geométricos em sua construção. Diante disso, a NBR 6118:2007 diz que na verificação do ELU de estruturas reticuladas, deve ser considerado um desaprumo dos elementos verticais.

Na análise global dessas estruturas, a norma prescreve que o desaprumo não deve necessariamente ser superposto ao carregamento de vento, e que entre os dois, deve ser considerado apenas o mais desfavorável (item 11.3.3.4.1). O carregamento mais desfavorável pode ser definido através do que provoca o maior momento total na base de construção.

Diante disso, podem surgir algumas dúvidas como:

Como saber, entre o vento e o desaprumo, qual provoca o maior momento total na base do edifício? Como inserir carregamento de desaprumo em meu modelo?

Iremos responder algumas dúvidas como essas nesta mensagem, mostrando como atender esse item da NBR6118:2007 nos Sistemas TQS V17.

Se nos dados do edifício não forem definidos casos de desaprumo, ao fazer o processamento global do modelo, o TQS irá estimar um momento na base do edifício causado por uma razão de desaprumo definida no arquivo de critérios do Pórtico-TQS, como mostrado a seguir.

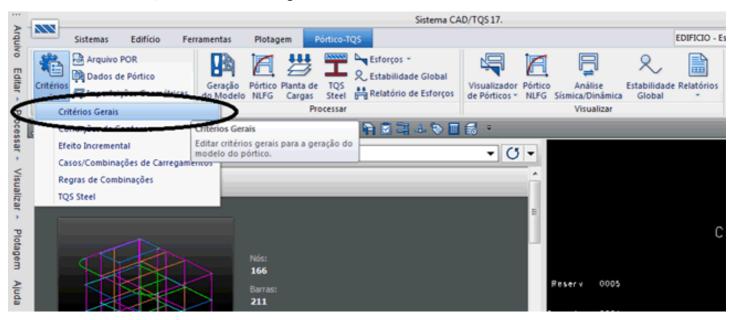


Figura 1

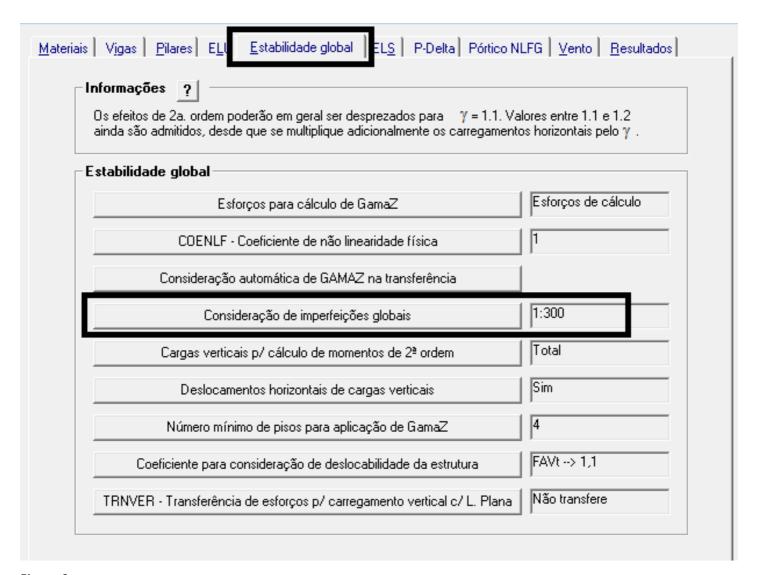


Figura 2

Figura 3

* O engenheiro deve calcular manualmente a razão de desaprumo do edifício a ser utilizada no processamento do pórtico, conforme o item 11.3.3.4.1 da NBR6118:2007, e editar esse valor no critério do pórtico, mostrado acima.

Se o momento estimado pela razão de desaprumo for maior que o momento causado pelo carregamento de vento, o TQS emitirá uma mensagem de erro grave, informando que os esforços de desaprumo são superiores ao de vento (ver figura abaixo).

Figura 4

Observe que até agora, os esforços de desaprumo não foram considerados no dimensionamento dos elementos estruturais. Portanto, o sistema nesta etapa somente está comparando um momento na base do edifício estimado para uma razão de desaprumo (critério), com o momento na base do edifício causado pelo vento em uma determinada direção.

Para verificar quais direções os esforços de desaprumo foram superiores ao de vento, deve-se acessar o Relatório de Estabilidade Global.

Figura 5

Parâmetro de estabilidade (GamaZ) para os carregamentos simples de vento												
Caso	Ang	CTot	м2	CHor	м1	Π		GamaZ		obs		
5	90.	3276.4	4.6	79.1				1.009				
6	270.	3276.4	4.6	79.1	642.6			1.009	.220			
7	0.	3276.4	16.2	16.3	132.8	Н	145.9	1.183	.870	BC		
8	180.	3276.4	16.2	16.3	132.8	П	145.9	1.183	.370	BC		

Figura 6

O momento causado pelo vento é representado pela variável M1, enquanto o momento causado pelo desaprumo pela variável Mig. No exemplo acima, pode-se verificar que o desaprumo provoca maior momento na base do edifício nas direções de 0 e 180 graus.

Diante disso, há pelo menos duas opções para resolver o problema:

Majorar o carregamento de vento, nas direções que Mig for maior que M1, para que o momento causado pelo vento seja superior ao momento causado pelo desaprumo;

Inserir casos de desaprumo nas direções que Mig for maior que M1;

Será explicado a seguir como tratar cada um desses itens.

1. Majorando o carregamento de vento

No Relatório de Estabilidade Global, o TQS mostra valores de coeficientes de arrasto (CAsu) para que o carregamento de vento provoque maior momento na base do edifício do que o desaprumo.

Caso CAtu CAsu Título	Coefi Coefi	ciente de	o de carregamento de vento e arrasto definido nos dados do edifício ugerido p/que o vento simule carregamento de desaprumo regamento
Caso	CAtu	CAsu	Título
7 8	.780 .780	.865 .865	Vento (3) 0° Vento (4) 180°

Figura 7

Assim, deve-se editar (aumentar) o valor do coeficiente de arrasto, nos dados do edifício, para as direções em que Mig for maior que M1, com o valor fornecido no Relatório de Estabilidade Global, como mostrado abaixo.

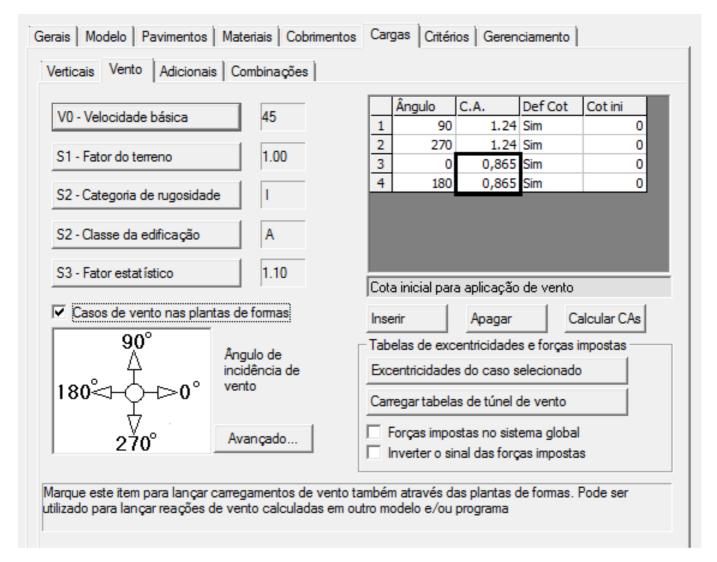


Figura 8

Feito isso, torna-se necessário refazer o processamento global do modelo, e reanalisar o Relatório de Estabilidade Global.

Observe que neste caso, não é necessário inserir casos de desaprumo no modelo, já que o momento causado pelo novo carregamento de vento (amplificado) será ligeiramente superior ao momento causado pela imperfeição geométrica global, nas respectivas direções.

2. Inserindo casos de desaprumo

Os casos de desaprumo devem ser inseridos nos dados do edifício, como mostra a figura a seguir.

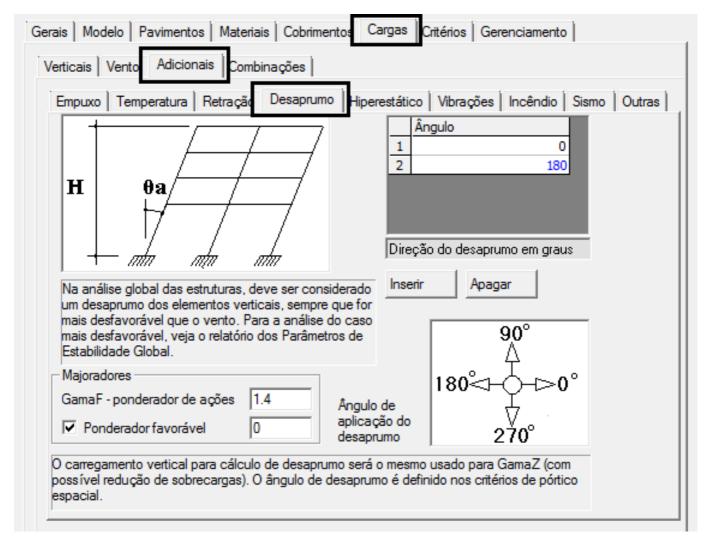


Figura 9

A razão de desaprumo (Oa) que será utilizada no cálculo, é a mesma configurada no arquivo de critérios do Pórtico-TQS, mostrado no início da mensagem (ver figuras 1, 2 e 3).

Porém, note que se o edifício utilizar o parâmetro γZ como método de análise dos efeitos de segunda ordem global, o carregamento de vento não poderá ser desprezado, já que o cálculo de γZ depende dos esforços horizontais.

Mas se a norma diz que o desaprumo não deve necessariamente ser superposto ao carregamento de vento, e que entre os dois, deve ser considerado apenas o mais desfavorável, como posso considerar imperfeição geométrica global em meu modelo, e mesmo assim fazer análise dos efeitos de segunda ordem global?

Abaixo foram descritas duas maneiras de resolver isso. A primeira, inserindo casos de vento com baixo valor de CA, e a segunda, definindo o Processo P-Delta como método de análise dos efeitos de segunda ordem global.

2.1. Casos de vento com baixo coeficiente de arrasto

O carregamento de vento (carga horizontal) é necessário para o cálculo do γZ, mas independe da intensidade dele. Por isso, uma alternativa para resolver o problema descrito anteriormente, é reduzir o coeficiente de arrasto para um valor baixo*, e inserir caso de desaprumo nas direções que este for mais desfavorável que o vento. Desta forma, o desaprumo será considerado nas combinações do ELU, e também será feita análise dos efeitos de segunda ordem global por γZ (FAVt).

* Um exemplo de valor baixo de coeficiente de arrasto para essa situação é 0,2.

Como, geralmente, o desaprumo é mais desfavorável que o vento em estruturas baixas, com elevadas cargas verticais, e/ou estruturas em que uma dimensão é muito pequena (baixo carregamento de vento), inserir casos de vento com baixo CA não deve provocar aumento dos esforços solicitantes significamente.

Sempre que houver casos de desaprumo e vento no modelo, na mesma direção, o TQS emitirá uma mensagem de erro grave, após o processamento global, informando que há ação de vento e desaprumo simultaneamente. Esta mensagem pode ser desconsiderada, já que estamos cientes dessa situação.

2.2. Utilização do processo P-Delta

Outra alternativa, é processar o modelo considerando o Processo P-Δ como método de análise dos efeitos de segunda ordem global. Assim, não é necessário inserir casos de vento com valor de CA baixo, nas direções que o desaprumo for mais desfavorável que o vento. Entretanto, o coeficiente RM2M1 somente será mostrado no Relatório de Estabilidade Global, nas direções que houver caso de vento definido.

Portanto, neste caso, deve(m) ser inserido(s) caso(s) de desaprumo e também, selecionada a opção P-Delta, nos dados do edifício.

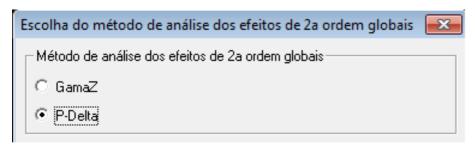


Figura 10

Os valores apresentados nesse texto servem apenas para ilustração, com o objetivo de tornar mais fácil o entendimento dos comandos e conceitos.