

Sapata - Cirsoc Ejemplo 2

SAPATA EXCENTRICA

Este exemplo tem como base o Ejemplo 87 do livro Introduccion al Cálculo de Hormigon Estructural - 2. Edicion (página 575). Se trata do dimensionamento de uma sapata e suas verificações. O modelo será lançado tb no software TQS com os mesmos esforços para comparação de resultados de flexão na sapata.

Dados:

Concreto: H-20

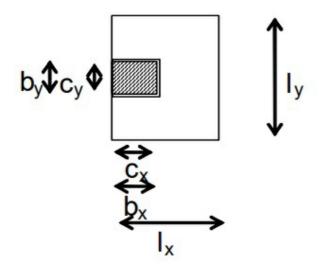
Aço: ADN 420

 $q = 2.0 \text{ kg/cm}^2$

Cargas:

 $P_D = 40000 \text{ kg} = 400 \text{ KN}$

 $P_L = 20000 \text{ kg} = 200 \text{ KN}$


Columna:

 $c_x = 45 \text{ cm}$

 $c_v = 45 \text{ cm}$

 $b_x = 50 \text{ cm}$

 $b_y = 50 \text{ cm}$

$$l_x = 120 \text{ cm}$$
 $l_y = 300 \text{ cm}$
 $h \ge \frac{(l-b)}{4} = 62,5cm$

Dimensionamento a Flexão - Cirsoc:

Direção y:

$$M_u = 208,12 \ kN.m$$

$$M_n = \frac{M_u}{0.9} = 231,24 \text{ kN}. m = 0,23 \text{ MN}. m$$

$$K_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0.57}{\sqrt{\frac{0.23}{0.50}}} = 0.84 \ m/MN$$

$$K_{e} = 24,945 \frac{cm^2}{MN}$$

$$A_s = K_\theta \cdot \frac{M_n}{d} = 24,945 \cdot \frac{0,23}{0,57} = 10 \ cm^2$$

$$A_{s,min} = 0.018 \cdot b \cdot h = 0.0018 \cdot 120 \cdot 65 = 14.04 \text{ cm}^2$$

$$A_{s,min} \ge A_s \rightarrow A_{s,min} \ OK!!$$

Detalhamento Final: 7 Ø 16 mm (14,07 cm2)

Direção x:

$$M_u = 163,20 \ kN.m$$

$$M_n = \frac{M_u}{0.9} = 181,33 \text{ kN}. m = 0,18 \text{ MN}. m$$

$$K_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,57}{\sqrt{\frac{0,18}{0,50}}} = 0,95 \ m/MN$$

$$K_e = 24,675 \frac{cm^2}{MN}$$

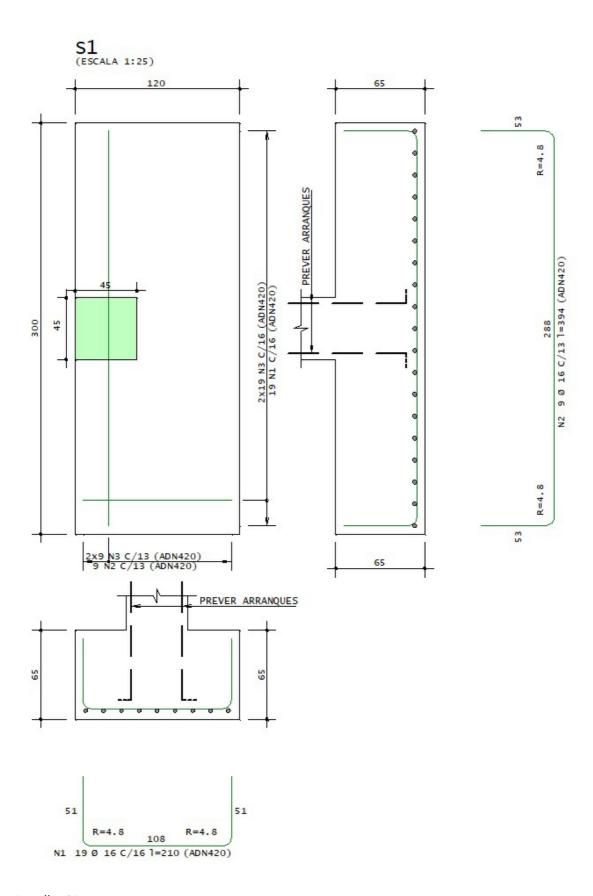
$$A_s = K_e \cdot \frac{M_n}{d} = 24,675 \cdot \frac{0,18}{0.57} = 7,80 \ cm^2$$

$$A_{s,min} = 0.018 \cdot b \cdot h = 0.0018 \cdot 100 \cdot 65 = 11.7 \ cm^2$$

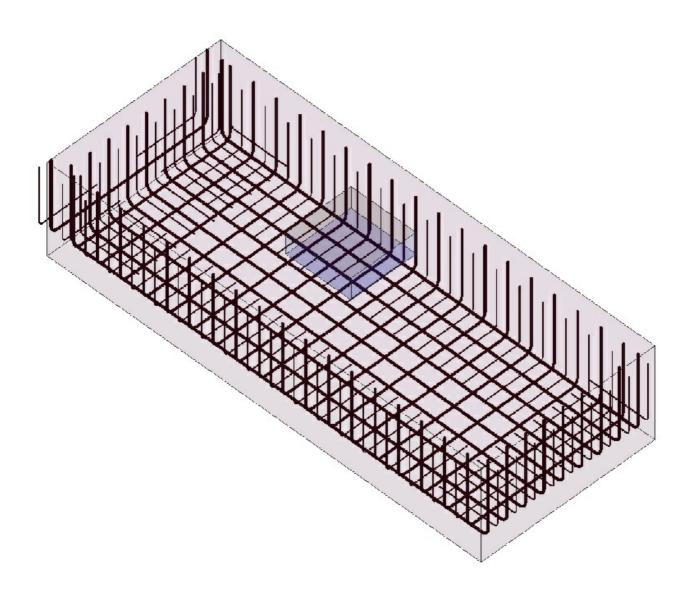
$$A_{s,min} \ge A_s \rightarrow A_{s,min} \ OK!!$$

Detalhamento Final: 6 % 16 mm (12,06 cm²) a cada metro \rightarrow 36,18 cm² total

Dimensionamento a Flexão - TQS:


Dimensionamento

Sentido	Momentos (tfm)		Armaduras (cm²)						
	M_{sd}	M_{min}	d	As _{calc}	As _{calc,corr}	As _{min,rho}	As _{min,crit}	As _{nec}	
Х	6.22	70.29	56.6	34.30	34.30	29.25	1.50	34.30	
Υ	31.11	28.12	58.2	14.80	14.80	11.70	1.50	14.80	


Detalhamento

Sentido	Armaduras							
	As _{det} (cm ²)	As _{det/s} (cm ² /m)	Nø	Ø (mm)	c/(cm)			
Х	38.20	12.73	19	16	16			
Υ	18.10	15.08	9	16	13			

Desenho 2D:

Detalhe 3D:

Conclusão:

Os resultados obtidos são muito semelhantes entre os apresentados pelo exemplo e o modelo feito no software TQS.