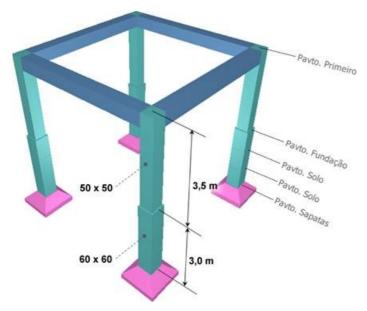


Simulação de sóculos de pilares

Dúvida enviada à comunidade TQS

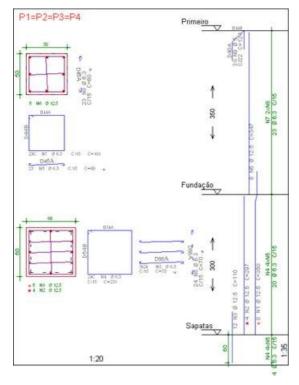
Gostaria de tirar uma dúvida sobre o procedimento automático de cálculo do software TQS (ou opinião do colegas) quando as sapatas de apoio estão muito abaixo do piso da fundação, e ai fazem-se necessários sóculos (pescoços) para apoio dos pilares.


A questão é como se armam estes complementos no programa, em geral com dimensões maiores que o pilar (2,5cm para cada lado pelo menos para apoio da forma) e imaginando-se que a fundação não possui um piso com capacidade de travamento (nem existam vigas para tal).

Calcula-se o pilar desde a sapata até o 1º piso sobre a fundação com o tamanho total e com a inércia variável ou dissociam-se os cálculos dos dois trechos, calculando-se esses sóculos como um "pilar em balanço" - imaginando-se que a terra não oferece travamento contínuo ao longo de sua altura???

Resposta

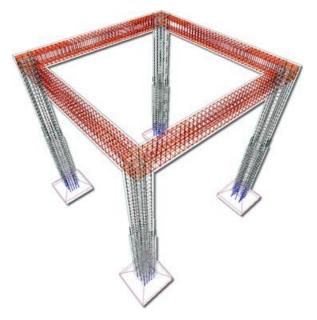
A seguir, irei fazer alguns comentários sobre a questão dos sóculos de pilares levantada por você, sobretudo procurando demonstrar como este tipo de situação, presente em estruturas de edifícios de concreto e com relativa complexidade de cálculo, pode ser simulado nos sistemas TQS.


Para simplificar a exposição, vou me basear num exemplo que montei a partir dos dados geométricos que você indicou e com as demais variáveis (fck, cargas, etc) com valores arbitrários. Trata-se de um edifício modelado no TQS, conforme ilustrado abaixo.

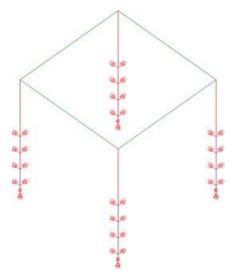
Note que foram definidos quatro pavimentos: um contendo as sapatas, outro para simular o solo (com 2 pisos repetidos a cada metro), o térreo (chamado de Fundação para ficar compatível com a sua nomenclatura) e o primeiro pavimento. Os quatro pilares, que são idênticos, possuem 3,0 m acima do topo da sapata confinados pelo solo, acrescidos de 3,5 m livres até as vigas do 1º pavimento. Nos três primeiros pavimentos, os pilares possuem seção de 60 cm X 60 cm. Já, no último, possuem 50 cm X 50 cm. Veja as plantas a seguir.

Ao processar o edifício globalmente, ativando o dimensionamento, detalhamento e desenho de vigas e pilares, obtêm-se automaticamente o seguinte desenho de armação.

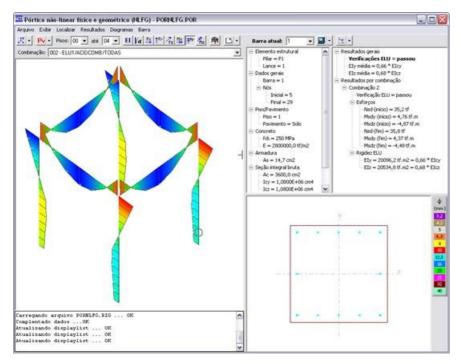
O dimensionamento das armaduras dos pilares levou em consideração a variação de seção, pé-direito de 6,25 m (6,5 $-\frac{1}{2}$ da altura da viga de 50 cm) e apoios articulados no topo e na base (bi-rotulado). Isso fica claro ao checar o relatório de montagem de carregamentos do TQS-Pilar, parcialmente mostrado abaixo.

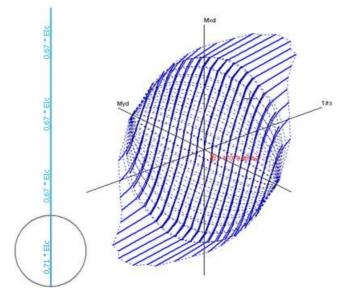

PILAR:P1 LANCE: 1										
VALORES OBTIDOS NA DETERMINAÇÃO DOS			CARREGAMENTOS							
CARR. COMB	e.Inicx	e.Mminx	e.1.x	e.2.x	e.Totx	le	lambdal	lambda	gamaN	Nd C.M20rd
1 (1)	4.13	3.30	4.13	.00	4.13	625.0	.0	.0	1.000	36.42
2 (1)	-11.04	3.30	-11.04	.00	-11.04	625.0	46.9	36.1	1.000	36.42
3 (1)	-18.96	3.30	-18.96	.00	-18.96	625.0	.0	.0	1.000	36.42
CARR. COMB	e.Inicy	e.Mainy	e.1.y	e.2.y	e. Toty	l le	lambda1	lambda	gamaN	Nd C.M20rd
1 (1)	4.13	3.30	4.13	.00	4.13	625.0	.0	.0	1.000	36.42
2 (1)	-11.04	3.30	-11.04	.00	-11.04	625.0	46.9	36.1	1.000	36.42
3 (1)	-18.96	3.30	-18.96	.00	-18.96	625.0	.0	.0	1.000	36.42
PILAR:P1 LANCE: 4						-				
VALORES OBT	IDOS NA I	ETERMINA	CAO DOS	CARREGAM	ENTOS	1	!	i !		
CARR. COMB	e.Inicx	e.Mminx	e.1.x	e.2.x	e.Totx	le	lambdal	lambda	gazaN	Nd C.M20rd
1 (1)	34.82	3.00	34.82	.00	34.82	625.0	.0	.0	1.000	32.50
2 (1)	22.75	3.00	22.75	.00	22.75	625.0	47.0	43.3	1.000	32.50
3 (1)	4.63	3.00	4.63	.00	4.63	625.0	.0	.0	1.000	32.50
CARR. COMB	e. Inicy	e.Mainy	e.1.y	e.2.y	e. Toty	l le	lambdal	lambda	ganaN	Nd C.M20rd
1 (1)	34.82	3.00	34.82	.00	34.82	625.0	.0	.0	1.000	32.50
2 (1)	22.75	3.00	22.75	.00	22.75	625.0	47.0	43.3	1.000	32.50
3 (1)	4.63	3.00	4.63	.00	4.63	625.0	.0	.0	1.000	32.50

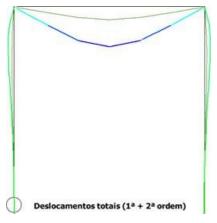
É importante salientar que o lançamento usual desta estrutura no sistema conduziria a um cálculo de um pilar birotulado com pé-direito de 6,25 m e seção única. Para introduzir a variação de seção no cálculo automático, defini


cargas verticais com valores muito pequenos nos pilares no pavimento Fundação dentro do Modelador Estrutural.

Até o presente momento, as condições de vinculação conferidas pelo solo não foram consideradas. Para atender este requisito, bem como refinar a análise, passarei a utilizar o Pórtico Não-Linear Físico e Geométrico (Pórtico NLFG) de agora em diante, recurso este disponível a partir da versão 14.


A geração desse modelo é baseada no pórtico espacial ELU do edifício e utiliza as reais armaduras detalhadas nas vigas e nos pilares para o cálculo da rigidez El a partir de diagramas N, M, 1/r.


Partindo destes princípios, introduzi coeficientes de molas com rigidezes arbitrárias (o real confinamento gerado pelo solo, neste caso, é discutível) nos nós do pórtico ELU que estão vinculados pelo solo.


Ao processar o Pórtico NLFG, então, obtive os seguintes resultados (diagrama de momentos fletores).

A rigidez El adotada em cada trecho dos pilares foi calculada levando-se em consideração a variação de seção e as reais armaduras detalhadas. Veja, a seguir, um exemplo do cálculo a partir de diagramas N, M, 1/r (superfície N, M, 1/r).

Os efeitos locais de 2ª ordem que, neste caso são pequenos, pois os pilares são robustos, foram calculados por uma análise não-linear geométrica refinada. Veja abaixo o diagrama de deslocamentos.

No visualizador de Pórtico NLFG, é possível avaliar o ELU à flexão composta oblíqua nas vigas e nos pilares de modo fácil.

Cabe lembrar que, em casos reais de edifícios com múltiplos pisos acima do primeiro pavimento, é possível ativar a análise do Pórtico NLFG somente nos pisos iniciais (critérios gerais do Pórtico-TQS), focando os locais onde realmente precisam ser averiguados.

Enfim, espero que, com a resolução deste exemplo, tenha lhe ajudado de alguma forma.

Obrigado pela atenção,

Alio (TQS Informática).