

Curvas e Superfícies de Interação

Sobre as condições de segurança, a ABNT NBR 6118:2003 estabelece que as resistências de cálculo da estrutura (R_d) não devem ser menores que as solicitações de cálculo (S_d) e devem ser verificadas para todos os estados limites e para todas as combinações especificadas para o tipo de construção considerada. Ou seja, em qualquer caso deve ser respeitada a condição:

$R_d \ge S_d$

Ao se conhecer a geometria de uma seção, as suas características e materiais, a armadura detalhada e os coeficientes de segurança, torna-se possível calcular a resistência última ($R_{,i}$) de qualquer seção de concreto armado.

A resistência última (R_d) da seção pode ser representada graficamente por curvas ou superfícies de interação, que são facilmente construídas por computadores.

No TQS existem duas ferramentas que montam curvas e superfícies de interação. São elas: o Editor Rápido de Armaduras do TQS-Pilar e a Calculadora de Flexão Composta Oblíqua, que serão apresentados com detalhes ao longo dessa mensagem.

Para flexão composta normal, podem ser construídas as curvas N-M. Já para flexão composta oblíqua, podem ser construídas as curvas ou superfícies N- M_{τ} - M_{τ} .

Para os exemplos apresentados nos itens "1. Curvas N-M" e "2. Curvas e Superfícies N- M_x - M_y " será utilizada a seguinte seção: 20x50 cm, armadura de 6 barras de 10 mm, concreto C25, aço CA-50, $\gamma_f = 1,4 \text{ e } \gamma_s = 1,15$.

1. Curvas N-M

Conforme citado anteriormente, as curvas N-M são utilizadas para seções submetidas à flexão composta normal, e elas representam diagramas de interação que relacionam força normal última (N_d) com momento fletor último (M_d), ou seja, a resistência última da seção (R_d).

Como montar uma curva N-M no Editor Rápido de Armaduras do TQS-Pilar?

A primeira observação a fazer é: apesar da ferramenta de montagem de Curvas e Superfícies de Interação estar no Editor Rápido de Armaduras do TQS-Pilar, essa ferramenta é válida para qualquer tipo de seção e não somente para seção de pilar.

Os comandos para montagem e visualização de curvas no Editor Rápido de Armaduras do TQS-Pilar são os seguintes:

435× A:35 P		″ <u>I</u> Z ⊠	13	12	は
-------------	--	----------------	----	----	---

Eles se encontram na Barra de Ferramentas de Cálculo de Seções.

Yc YJ 1	Concreto ====== Área total Área por elemento Número de elementos	1000.0 2.500 400	cm2 cm2
· _ \$6 . *c	Fek GamaCAco	250. 1.40	kgf/cm2
	Área total	4.7	cm2
	Numero de elementos Fyk Tipo de aço	5000. A	kgf/cm2
	Mádulo de elosticidade	2100000.	

É importante saber utilizar corretamente o comando Valores de Curvas - $\frac{R=35}{B=25}$ para configurar as visualizações das curvas. Nesse caso, para visualizar a curva N- M_x , basta definir a visualização das curvas verticais com M_{yd} constante e igual a 0 tf.m.

	Curvas horizontais - Fzd constante Curvas horizontais Curvas horizontais	Curvas verticais - Mxd/Myd constan Curvas verticais Mxd constante Mx 0 thm Myd constante My 0 thm Mxd/Myd constante
--	--	---

Após definir a visualização, é preciso gerar novamente a curva utilizando o comando Curvas de Interação - 25; :

Observe que M_{xd} (momento na direção X) está definido no eixo X, e N_d (Força Normal) está definido no eixo Y. Como montar uma curva N-M na Calculadora de Flexão Composta Oblíqua?

Primeiramente, para acessar a calculadora é preciso seguir os seguintes comandos: Ferramentas > Utilidades > Calculadoras > Flexão Composta Oblíqua:

Ao entrar na Calculadora de Flexão Composta Oblíqua, é necessário definir a seção a ser verificada. Para isso, a seção precisa ser criada e salva em uma extensão chamada PMC dentro da própria calculadora.

Segue abaixo, imagem da seção e materiais já definidos:

hulo da seção	[Observação		🗆 Porárea 🎫 🚧
			0 • 2 4 0 2	X Y Bitola 1 4,0 4,0 10,0 2 25,0 4,0 10,0 3 46,0 4,0 10,0 4 4,0 16,0 10,0 5 25,0 16,0 10,0 6 46,0 16,0 10,0
	é	\$	ø	
30	0	02	ø ³	Materiais (concreto e aço) fok (MPa) fyk (MPa)
		50,0		25 ▼ 500 ▼ Yc Ys 1.15 Γ Φ Es (MPa) 0.0 [210000]

Observe que nessa calculadora é possível também definir armaduras ativas (protensão).

Selecionando a aba "[ELU] Curvas de interação N, M" pode-se gerar a curva de forma bem simples, bastando apertar o botão Montar Curva - <u>Montar curva</u>.

Ao definir um valor de Força Normal (N_d) no campo reservado para isso, o programa irá montar a curva e indicar para dada Força Normal, quais os momentos na direção definida que a seção resiste, conforme mostrado abaixo:

Nesse caso, diferentemente do representado no Editor Rápido de Armaduras do TQS-Pilar, a normal última (N_d) está representada no eixo X, e o momento último na direção X (M_{rd}) está representado no eixo Y.

O que é importante concluir desse caso: caso a solicitação (S_d) composta por uma força normal solicitante (N_d) e por um momento fletor solicitante (M_{sd}) seja definida por um ponto dentro ou sobre a curva de interação, a condição de segurança fica atendida ($S_d \le R_d$).

Contrariamente, quando a solicitação (S_d) ficar representada por um ponto para fora da curva de interação, a ruptura é atingida. Mais à frente, isso será mostrado com detalhes.

2. Curvas e Superfícies N-Mx-My

2.1 Curvas N-Mx-My

Conforme citado anteriormente, as curvas N- M_x - M_y são utilizadas para análise de seções submetidas à flexão composta oblíqua, e elas representam diagramas de interação que relacionam força normal última (N_d) com momento fletor último (M_d) nas duas direções, ou seja, a resistência última da seção (R_d).

As curvas de interação N- M_x - M_y são montadas com uma força normal última (N_d) pré-fixada.

Como montar uma curva N-Mx-My no Editor Rápido de Armaduras do TQS-Pilar?

Da mesma forma como montar uma curva N-M, porém é necessário pré-fixar um valor de força normal última (N_d) utilizando os Valores de Curvas - 📇 :

Para uma normal última pré-fixada em 100 tf, obtém-se a seguinte curva N- M_x - M_y . Onde no eixo X está definido o M_{xd} e no eixo Y, o M_{yd} .

Como montar uma curva N-Mx-My na Calculadora de Flexão Composta Oblíqua?

Da mesma forma como foi montada a curva N-M, é preciso ter uma seção com as armaduras definidas salva em extensão PMC. Para o exemplo a seguir, foi utilizada a mesma seção definida no item Curvas N-M.

Selecionando a aba "[ELU] Curva de interação N- M_x - M_y ", da mesma forma como no Editor Rápido de Armaduras do TQS-Pilar, é necessário pré-fixar um valor de Força Normal (N_d) e então, basta gerar a curva de forma bem simples apertando o botão Montar Curva - Montar curva.

Da mesma forma que no item anterior, para uma Força Normal pré-fixada de 100 tf, obtém-se a seguinte Curva N- M_x - M_y :

No eixo X está definido M_{xd} , assim como no eixo Y está definido M_{yd} . Observe o que a curva representa: para uma Força Normal pré-fixada de 100 tf, a seção resiste a 4,1 tf.m de momento em torno da direção X e a 10,5 tf.m em torno da direção Y.

Ainda nessa aba da calculadora, existe um recurso interessante que é o comando Verificar -

1t	
Verificar	

Ao definir um M_{xd} e um M_{yd} , e apertar o botão Verificar, o programa verifica se o ponto está dentro ou fora da curva. Se o ponto estiver dentro da curva ou sobre a curva significa que $S_d \leq R_d$, e portanto, não há ruptura da seção.

Já se o ponto estiver fora da curva, significa que $R_d < S_d$, e portanto, há ruptura da seção.

2.2 Superfícies N-Mx-My

Ao montar curvas N- M_x - M_y sucessivamente, variando-se o valor da Força Normal desde a máxima tração resistente até a máxima compressão resistente, obtém-se o que é chamado de Superfície de Interação N- M_x - M_y . Ou seja, trata-se do caso geral para análise de flexão composta oblíqua.

No programa, as Superfícies de Interação podem ser geradas através do Editor Rápido de Armaduras do TQS-Pilar também utilizando os comandos da Barra de Ferramentas de Cálculo de Seções, conforme citado no início dessa mensagem.

Para gerar a Superfície de Interação, basta acionar o primeiro comando mostrado na figura acima: Curvas de Interação - 🚓 . Novamente, a tela com as características da seção será mostrada, e observe que no rodapé da tela,

o programa pergunta se você quer efetuar o cálculo da seção:

```
Gerar curvas de interação
Efetuar o cálculo da seção ? S/N [S]
```

A opção "SIM" já está selecionada, bastando, portanto teclar ENTER para que a superfície seja gerada.

É possível alterar o modo de visualização da Superfície de Interação gerada: em planta ou em perspectivas. Observe os modos possíveis de serem visualizados de acordo com o comando utilizado:

