


Vento - Building #1 - ACI Design Guide

VENTO

Neste exemplo, será comparado os resultados de carga de vento do TQS com a Norma ACI 318-19 usando o modelo do Prédio #1 do Design Guide do ACI 318-19.

Determinar a carga de vento para o sistema principal de resistência de vento (MFWRS em suas siglas em inglês)

Dados:

Pilares Seção: 24 x 24 in

Para o vento se adota os seguintes valores:

V = 107 mph,

Categoria de risco II

categoria de exposição C

Kzt Fator topográfico = 1

Altitude do terreno 0 ft

Ângulo de incidência do vento = 0, 90, 180, 270 (o edifício é totalmente simétrico)

Considerando as equações da norma ASCE 7 16

O Exemplo está assumindo o seguinte:

A pressão do vento é calculada com a seguinte equação

 $q = 0.00256 \text{ Kz Kzt Kd KeV}^2$

Kz = coeficiente de exposição à pressão de velocidade (26.10.1) e é determinado com base no tipo de exposição

26.10-1) Se calcula em base a zg e α que são definidos na Tabela 26.11-1.

Kzt = fator topográfico (26.8.2). Pode ser um valor de entrada do usuário ou, alternativamente, pode ser calculado a partir

Kzt = (1 + K1K2K3)2(26.8-1)

Kd = fator de direcionalidade do vento (26.6) (entrada do usuário). O valor por defeito é 0,85

Ke = fator de elevação do solo (26.9) (considerando a elevação sobre o nível do mar)

Ke =e-0.0000362zg (zg =elevação sobre o nível do mar em ft).

V = Velocidade básica do vento (Seção 26.5) (entrada do usuário)

O valor do coeficiente de rajada pode ser calculado ou também especificado pelo usuário o que o TQS não tem. Na referência "Guide to the Wind Load Provisions of ASCE 7-10" vários dos exemplos tem o valor de G = 0.85 constante e fixo. Parece que esta é uma opção bastante usada.

Rigidez:

Segundo a Norma, temos abaixo:

For concrete moment-resisting frame buildings [ASCE/SEI Eq. (26.11-3)]:

$$n_a = 43.5 \: / \: h^{0.9} = 43.5 \: / \: 60.0^{0.9} = 1.09 \: \mathrm{Hz} > 1.0 \: \mathrm{Hz}$$

Therefore, the building is rigid in both directions.

No TQS:

Resultados:

Coeficiente de pressão externa Cp

Para os casos de vento em 0° e 90°:

For wind in the north-south direction:

- Windward wall: $C_p = 0.80$ for all L / B
- • Leeward wall: $L\,/\,B = 95.67\,/\,151.67 = 0.63;\ C_p = -0.50$

No TQS:

Caso Ps 5 1 6 1	z A 7.000' 90.0 7.000' 270.0	B 152.000' 152.000'	L 96.000' 96.000'	14.000' 0.87 6	0.85 1.00	Gf Cps Q 0.88 -0.5027.1 0.88 -0.5027.1	64 57.80	0.00	0.00
7 1	7.000' 0.0 7.000' 180.0	96.000' 96.000'	152.000' 152.000'	14.000' 0.87 6	0.85 1.00	0.89 -0.3824.4 0.89 -0.3824.4	74 32.89	0.00	0.00

Calculo do Kz

Segundo a Norma:

Table 3.7 Velocity Pressure Exposure Coefficients, K_z , Building #1

Height Above Groun	d Level, z (ft)	Kz	
60.0		1.14	
48.5		1.09	
37.0		1.03	
25.5		0.95	
14.0		0.85	

No TQS:

Caso Ps	7	А	В	L	Pd	KZ Kd Ke G	f Cps Q F	Fy	Mz
5 1	7.000	90.0	152.000'	96.000'	14.000	0.87 0.85 1.00 0.8		0.00	0.00
6 1	7.000'	270.0	152.000'	96.000'	14.000	0.87 0.85 1.00 0.8		0.00	0.00
7 1	7.000'	0.0	96.000'	152.000'	14.000	0.87 0.85 1.00 0.8	9 -0.3824.474 32.89	0.00	0.00
8 1	7.000'	180.0	96.000'	152.000'	14.000	0.87 0.85 1.00 0.8	9 -0.3824.474 32.89	0.00	0.00
5 2	19.750'	90.0	152.000'	96.000'	11.500	0.90 0.85 1.00 0.8	8 -0.5027.758 48.52	0.00	0.00
6 2	19.750'	270.0	152.000'	96.000'	11.500	0.90 0.85 1.00 0.8	8 -0.5027.758 48.52	0.00	0.00
7 2	19.750'	0.0	96.000'	152.000'	11.500	0.90 0.85 1.00 0.8	9 -0.3825.073 27.68	0.00	0.00
8 2	19.750'	180.0	96.000'	152.000'	11.500	0.90 0.85 1.00 0.8	9 -0.3825.073 27.68	0.00	0.00
5 3	31.250'	90.0	152.000'	96.000'	11.500	0.99 0.85 1.00 0.8	8 -0.5029.331 51.27	0.00	0.00
6 3	31.250'	270.0	152.000'	96.000'	11.500	0.99 0.85 1.00 0.8	8 -0.5029.331 51.27	0.00	0.00
7 3	31.250'	0.0	96.000'	152.000'	11.500	0.99 0.85 1.00 0.8	9 -0.3826.657 29.43	0.00	0.00
8 3	31.250'	180.0	96.000'	152.000'	11.500	0.99 0.85 1.00 0.8	9 -0.3826.657 29.43	0.00	0.00
5 4	42.750'	90.0	152.000'	96.000'	11.500	1.06 0.85 1.00 0.8	8 -0.5030.496 53.31	0.00	0.00
6 4	42.750'	270.0	152.000'	96.000'	11.500	1.06 0.85 1.00 0.8	8 -0.5030.496 53.31	0.00	0.00
7 4	42.750'	0.0	96.000'	152.000'	11.500	1.06 0.85 1.00 0.8	9 -0.3827.830 30.72	0.00	0.00
8 4	42.750'	180.0	96.000'	152.000'	11.500	1.06 0.85 1.00 0.8	9 -0.3827.830 30.72	0.00	0.00
5 5	54.250'	90.0	152.000'	96.000'	11.500	1.11 0.85 1.00 0.8	8 -0.5031.434 54.95	0.00	0.00
6 5	54.250'	270.0	152.000'	96.000'	11.500	1.11 0.85 1.00 0.8	8 -0.5031.434 54.95	0.00	0.00
7 5	54.250'	0.0	96.000'	152.000'	11.500	1.11 0.85 1.00 0.8	9 -0.3828.775 31.77	0.00	0.00
8 5	54.250'	180.0	96.000'	152.000'	11.500	1.11 0.85 1.00 0.8	9 -0.3828.775 31.77	0.00	0.00

Obs: TQS considera a altura média do andar

Fator de Rajada Gf

Fazendo os cálculos manuais:

$$R_{l(\eta)} = \frac{1}{n} - \frac{1}{2 \cdot n^2} \cdot (1 - e^{-2 \cdot n})$$

$$\begin{split} n_a &= 1,092 \, H_z \\ \eta &= c \cdot n \cdot \frac{x}{V_z} \\ \eta_h &= 2,377 \\ \eta_B &= 6,022 \\ \eta_L &= 12,733 \\ R_h &= R_{l}(\eta_h) = \frac{1}{2,377} - \frac{1}{2 \cdot 2,377^2} \cdot (1 - e^{-2 \cdot 2,377}) = 0,333 \\ R_B &= R_{l}(\eta_B) = \frac{1}{6,022} - \frac{1}{2 \cdot 6,022^2} \cdot (1 - e^{-2 \cdot 6,022}) = 0,152 \\ R_h &= R_{l}(\eta_L) = \frac{1}{12,733} - \frac{1}{2 \cdot 12,733^2} \cdot (1 - e^{-2 \cdot 12,733}) = 0,075 \\ N_1 &= \frac{n_a}{s} \cdot \frac{L_z}{V_z} = 5,66 \\ R_n &= \frac{(7,47 \cdot N_1)}{(1 + 10,3 \cdot N_1)^{\frac{5}{3}}} = 0,047 \\ R &= \sqrt{\frac{1}{\beta}} \cdot R_n \cdot R_h \cdot R_B \cdot (0,53 + 0,47 \cdot R_l) = 0,259 \ \rightarrow R^2 = 0,067 \\ g_R &= \sqrt{2 \cdot l_n \cdot (3600 \cdot n_a)} + \frac{0,577}{\sqrt{2 \cdot l_n \cdot (3600 \cdot n_a)}} = 4,21 \\ Q &= 0,874/g_Q = 3,4 \\ G_f &= 0,925 \cdot \left(\frac{1 + 1,7 \cdot l_z \cdot \sqrt{g_q^2 \cdot Q^2 + g_r^2 \cdot R^2}}{1 + 1,7 \cdot g_v \cdot l_z}\right) = 0,896 \end{split}$$

$$TQS = 0.896 \rightarrow OK!!$$

Cálculo de Forças por andar

Table 3.10 Total Design Wind Forces, Building 1

Height Above	North-S	South	East-West		
Ground Level, z (ft)	Tributary Area (sq ft)	Wind Force (kips)	Tributary Area (sq ft)	Wind Force (kips)	
60.0	872.1	27.4	550.1	15.7	
48.5	1,744.2	53.4	1,100.2	30.5	
37.0	1,744.2	51.6	1,100.2	29.4	
25.5	1,744.2	49.2	1,100.2	27.8	
14.0	1,933.8	51.3	1,219.8	28.8	
	Σ	232.9		132.2	

TQS:

Conclusões:

Em geral se observam que os resultados são semelhantes apresentando apenas pequenas diferenças. O calculo feito TQS obedece às formulas propostas pela Norma ACI318-19.